Continuous Markovian Logic - From Complete Axiomatization to the Metric Space of Formulas
نویسندگان
چکیده
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-space and continuous-time labelled Markov processes (CMPs). The modalities of CML approximate the rates of the exponentially distributed random variables that characterize the duration of the labeled transitions. In this paper we present a sound and complete Hilbert-style axiomatization of CML for the CMP-semantics and prove some metaproperties including the small model property. CML characterizes stochastic bisimulation and supports the definition of a quantified extension of satisfiability relation that measures the compatibility of a model and a property. Relying on the small model property, we prove that this measure can be approximated, within a given error, by using a distance between logical formulas. 1998 ACM Subject Classification F.4.1 Mathematical logic. Modal logic, G3. Probability and Statistics. Markov processes.
منابع مشابه
Parameterized Metatheory for Continuous Markovian Logic
This paper shows that a classic metalogical framework, including all Boolean operators, can be used to support the development of a metric behavioural theory for Markov processes. Previously, only intuitionistic frameworks or frameworks without negation and logical implication have been developed to fulfill this task. The focus of this paper is on continuous Markovian logic (CML), a logic that ...
متن کاملModular Markovian Logic
We introduce Modular Markovian Logic (MML) for compositional continuous-time and continuous-space Markov processes. MML combines operators specific to stochastic logics with operators reflecting the modular structure of the models, similar to those used by spatial and separation logics. We present a complete Hilbert-style axiomatization for MML, prove the small model property and analyze the re...
متن کاملLinear Formulas in Continuous Logic
We prove that continuous sentences preserved by the ultramean construction (a generalization of the ultraproduct construction) are exactly those sentences which are approximated by linear sentences. Continuous sentences preserved by linear elementary equivalence are exactly those sentences which are approximated in the Riesz space generated by linear sentences. Also, characterizations for linea...
متن کاملOn the intermediate logic of open subsets of metric spaces
In this paper we study the intermediate logic MLO(X ) of open subsets of a metric space X . This logic is closely related to Medvedev’s logic of finite problemsML. We prove several facts about this logic: its inclusion in ML, impossibility of its finite axiomatization and indistinguishability from ML within some large class of propositional formulas.
متن کاملContinuous Markovian Logics - Axiomatization and Quantified Metatheory
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates of the exponentially distributed random variables that characterize the duration of the labeled transitions...
متن کامل